Search results for " pseudoradial"

showing 3 items of 3 documents

Free sequences and the tightness of pseudoradial spaces

2019

Let F(X) be the supremum of cardinalities of free sequences in X. We prove that the radial character of every Lindelof Hausdorff almost radial space X and the set-tightness of every Lindelof Hausdorff space are always bounded above by F(X). We then improve a result of Dow, Juhasz, Soukup, Szentmiklossy and Weiss by proving that if X is a Lindelof Hausdorff space, and $$X_\delta $$ denotes the $$G_\delta $$ topology on X then $$t(X_\delta ) \le 2^{t(X)}$$ . Finally, we exploit this to prove that if X is a Lindelof Hausdorff pseudoradial space then $$F(X_\delta ) \le 2^{F(X)}$$ .

Algebra and Number TheoryApplied Mathematics010102 general mathematicsGeneral Topology (math.GN)Hausdorff spaceMathematics::General TopologySpace (mathematics)01 natural sciencesInfimum and supremum010101 applied mathematicsCombinatoricsMathematics::LogicComputational MathematicsCharacter (mathematics)Free sequence tightness Lindelof degree pseudoradialFOS: MathematicsGeometry and TopologySettore MAT/03 - Geometria0101 mathematicsAnalysisMathematics - General TopologyMathematics
researchProduct

Countably compact weakly Whyburn spaces

2015

The weak Whyburn property is a generalization of the classical sequential property that was studied by many authors. A space X is weakly Whyburn if for every non-closed set \({A \subset X}\) there is a subset \({B \subset A}\) such that \({\overline{B} \setminus A}\) is a singleton. We prove that every countably compact Urysohn space of cardinality smaller than the continuum is weakly Whyburn and show that, consistently, the Urysohn assumption is essential. We also give conditions for a (countably compact) weakly Whyburn space to be pseudoradial and construct a countably compact weakly Whyburn non-pseudoradial regular space, which solves a question asked by Angelo Bella in private communica…

Discrete mathematicsSingletonGeneralizationGeneral Mathematics010102 general mathematicsGeneral Topology (math.GN)Mathematics::General TopologyPrivate communicationUrysohn and completely Hausdorff spacesWeak Whyburn property convergence Lindelof P -space Urysohn countably compact pseudoradial.Space (mathematics)01 natural sciences010101 applied mathematicsCombinatoricsMathematics::LogicCardinalityFOS: MathematicsRegular spaceSettore MAT/03 - GeometriaContinuum (set theory)0101 mathematicsMathematicsMathematics - General Topology
researchProduct

P-spaces and the Whyburn property

2009

We investigate the Whyburn and weakly Whyburn property in the class of $P$-spaces, that is spaces where every countable intersection of open sets is open. We construct examples of non-weakly Whyburn $P$-spaces of size continuum, thus giving a negative answer under CH to a question of Pelant, Tkachenko, Tkachuk and Wilson. In addition, we show that the weak Kurepa Hypothesis (a set-theoretic assumption weaker than CH) implies the existence of a non-weakly Whyburn $P$-space of size $\aleph_2$. Finally, we consider the behavior of the above-mentioned properties under products; we show in particular that the product of a Lindel\"of weakly Whyburn P-space and a Lindel\"of Whyburn $P$-space is we…

Mathematics::General TopologyFOS: Mathematicsnowhere MAD familyP-space; Whyburn space; weakly Whyburn space; Lindelöf space; pseudoradial space; radial space; radial character; ω-modification; cardinality; weight; extent; pseudocharacter; almost disjoint family; nowhere MAD family; Continuum Hypothesis; week Kurepa treepseudocharacterweakly Whyburn spaceMathematics - General Topologyradial spacealmost disjoint familyω-modificationweek Kurepa treeGeneral Topology (math.GN)weightContinuum HypothesisLindelof space54G10 54A20 54A35 54D20 54B10Whyburn spaceextentLindelöf spaceradial charactercardinalitypseudoradial spaceP-spaceSettore MAT/03 - Geometriaweak Kurepa tree.MAD family
researchProduct